【CCCC】L3-007 天梯地图 (30分),两次Dijkstra+路径打印(数据点2,4错因),90行最短题解

problem

L3-007 天梯地图 (30分)
本题要求你实现一个天梯赛专属在线地图,队员输入自己学校所在地和赛场地点后,该地图应该推荐两条路线:一条是最快到达路线;一条是最短距离的路线。题目保证对任意的查询请求,地图上都至少存在一条可达路线。

输入格式:
输入在第一行给出两个正整数N(2 ≤ N ≤ 500)和M,分别为地图中所有标记地点的个数和连接地点的道路条数。随后M行,每行按如下格式给出一条道路的信息:

V1 V2 one-way length time
其中V1和V2是道路的两个端点的编号(从0到N-1);如果该道路是从V1到V2的单行线,则one-way为1,否则为0;length是道路的长度;time是通过该路所需要的时间。最后给出一对起点和终点的编号。

输出格式:
首先按下列格式输出最快到达的时间T和用节点编号表示的路线:

Time = T: 起点 => 节点1 => … => 终点
然后在下一行按下列格式输出最短距离D和用节点编号表示的路线:

Distance = D: 起点 => 节点1 => … => 终点
如果最快到达路线不唯一,则输出几条最快路线中最短的那条,题目保证这条路线是唯一的。而如果最短距离的路线不唯一,则输出途径节点数最少的那条,题目保证这条路线是唯一的。

如果这两条路线是完全一样的,则按下列格式输出:

Time = T; Distance = D: 起点 => 节点1 => … => 终点
输入样例1:
10 15
0 1 0 1 1
8 0 0 1 1
4 8 1 1 1
5 4 0 2 3
5 9 1 1 4
0 6 0 1 1
7 3 1 1 2
8 3 1 1 2
2 5 0 2 2
2 1 1 1 1
1 5 0 1 3
1 4 0 1 1
9 7 1 1 3
3 1 0 2 5
6 3 1 2 1
5 3
输出样例1:
Time = 6: 5 => 4 => 8 => 3
Distance = 3: 5 => 1 => 3
输入样例2:
7 9
0 4 1 1 1
1 6 1 3 1
2 6 1 1 1
2 5 1 2 2
3 0 0 1 1
3 1 1 3 1
3 2 1 2 1
4 5 0 2 2
6 5 1 2 1
3 5
输出样例2:
Time = 3; Distance = 4: 3 => 2 => 5

  • n个点m条边的有向图,求两次最短路,打印路径
  • 如果最快到达路线不唯一,则输出几条最快路线中最短的那条
  • 如果最短距离的路线不唯一,则输出途径节点数最少的那条

solution

  • Dijkstra+路径打印(邻接表),这不是个模板么,,看我秒他。。
  • WA2,4,这也能错?改不动了改不动了。。。
  • 找不到数据,只好重新写一个,这次把dij拆出来,路径打印换成递归(大家都这样)结果WA2
  • 原来的那个改出来了,,数据点2,4的错误地方在注释里注明了
//AC
#include<bits/stdc++.h>
using namespace std;
const int maxn = 550;

int n, m, s, t;
int e[2][maxn][maxn], dist[2][maxn], vis[2][maxn], pre[2][maxn], w[2][maxn];
void Dijkstra(int rk){
	memset(dist[rk],0x3f,sizeof(dist[rk]));
	memset(vis[rk],0,sizeof(vis[rk]));
	memset(pre[rk],-1,sizeof(pre[rk]));
	dist[rk][s] = 0;
	for(int i = 0; i < n; i++){
		int u = -1, _min = 1e9;
		for(int j = 0; j < n; j++){
			if(!vis[rk][j] && dist[rk][j]<_min){
				_min = dist[rk][j];  u = j;
			}
		}
		if(u==-1)return ;
		vis[rk][u] = 1;
		for(int j = 0; j < n; j++){
			if(!vis[rk][j] && dist[rk][j]>dist[rk][u]+e[rk][u][j]){
				dist[rk][j] = dist[rk][u]+e[rk][u][j];
				pre[rk][j] = u;
				//距离
				if(rk==0){
					w[rk][j] = w[rk][u]+1;//+1?!!:WA4!!					
				}
				//时间
				if(rk==1){
					w[rk][j] = w[rk][u]+e[!rk][u][j];//WA2!
				}
			}else if(!vis[rk][j] && dist[rk][j] == dist[rk][u]+e[rk][u][j]){
				//距离
				if(rk==0){
					if(w[rk][j] > w[rk][u]+1){
						w[rk][j] = w[rk][u]+1;
						pre[rk][j] = u;
					}
				}
				//时间
				if(rk==1){
					if(w[rk][j] > w[rk][u]+e[!rk][u][j]){
						w[rk][j] = w[rk][u]+e[!rk][u][j];
						pre[rk][j] = u;
					}
				}				
			}
		}
	}
}
void Print(int rk, int x){
	if(x==-1){
		return ;
	}else{
		Print(rk, pre[rk][x]);
		printf(" %d =>", x);
	}
}

int main(){
	memset(e,0x3f,sizeof(e));
	cin>>n>>m;
	for(int i = 1; i <= m; i++){
		int a, b, on, le, ti;
		cin>>a>>b>>on>>le>>ti;
		if(on==1){
			e[0][a][b] = le;
			e[1][a][b] = ti;
		}else{
			e[0][a][b] = le;
			e[1][a][b] = ti;
			e[0][b][a] = le;
			e[1][b][a] = ti;
		}
	}
	cin>>s>>t;
	Dijkstra(0);
	Dijkstra(1);
	int ok = 1, i = pre[0][t], j = pre[1][t];
	while(i!=-1 && j!=-1){
		if(pre[0][i] != pre[0][j]){ok=0;break;}
		i = pre[0][i];
		j = pre[1][j];
	}
	if(ok){
		printf("Time = %d;",dist[1][t]);
		printf(" Distance = %d:",dist[0][t]);
		Print(1,pre[1][t]);
		printf(" %d\n",t);
		return 0;
	}
	printf("Time = %d:",dist[1][t]);
	Print(1,pre[1][t]);
	printf(" %d\n",t);
	printf("Distance = %d:",dist[0][t]);
	Print(0,pre[0][t]);
	printf(" %d",t);
	return 0;
}
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 技术工厂 设计师:CSDN官方博客 返回首页