【CCCC】L3-010 是否完全二叉搜索树 (30分),完全二叉树判断+层次遍历(奇怪的方法)

problem

L3-010 是否完全二叉搜索树 (30分)
将一系列给定数字顺序插入一个初始为空的二叉搜索树(定义为左子树键值大,右子树键值小),你需要判断最后的树是否一棵完全二叉树,并且给出其层序遍历的结果。

输入格式:
输入第一行给出一个不超过20的正整数N;第二行给出N个互不相同的正整数,其间以空格分隔。

输出格式:
将输入的N个正整数顺序插入一个初始为空的二叉搜索树。在第一行中输出结果树的层序遍历结果,数字间以1个空格分隔,行的首尾不得有多余空格。第二行输出YES,如果该树是完全二叉树;否则输出NO。

输入样例1:
9
38 45 42 24 58 30 67 12 51
输出样例1:
38 45 24 58 42 30 12 67 51
YES
输入样例2:
8
38 24 12 45 58 67 42 51
输出样例2:
38 45 24 58 42 12 67 51
NO
作者
陈越
单位
浙江大学
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB

  • 给定一个序列,建立一棵二叉搜索树
  • 输出层次遍历,并判断是否是完全二叉树

solution

  • 直接当做完全二叉树去建树,如果最后节点编号超过n(即,有奇怪的形状),那么就是NO
  • 层次遍历直接扫描序列,有就输出即可。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1010;

int Tree[maxn];
void update(int root, int val){
	if(!Tree[root])
		Tree[root] = val;
	else if(val > Tree[root])
		update(root*2, val);
	else 
		update(root*2+1,val);
}

int main(){
	int n;  cin>>n;
	for(int i = 1; i <= n; i++){
		int x;  cin>>x;  update(1,x);
	}
	int ok = 0, cnt = 0;
	for(int i = 1; i < maxn; i++){
		if(Tree[i]){
			if(ok)cout<<" ";
			else ok = 1;
			cout<<Tree[i];
			cnt = i;
		}
	}
	if(cnt > n)cout<<"\nNO\n";
	else cout<<"\nYES\n";
	return 0;
}


已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 技术工厂 设计师:CSDN官方博客 返回首页